
DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

1

Bertrand Meyer
Interactive Software Engineering & Monash University

Author’s address:
Interactive Software Engineering
ISE Building, 270 Storke Road
Santa Barbara, CA 93117 USA
Telephone 805-685-1006, Fax 805-685-6869
E-mail <info@eiffel.com> http://tools.com

© Bertrand Meyer, 1988-1999

DESIGN BY CONTRACT

and the

Component Revolution

http://eiffel.com

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

2

PLAN
• Introduction, references, terminology 3

• Part 1: Issues 22

• Part 2: Principles 36

• Part 3: Applications 74

Part 3.1: What are contracts good for? 75
Part 3.2: Contracts and quality assurance 75
Part 3.3: Contracts and documentation 86
Part 3.4: Contracts and inheritance 98
Part 3.5: Handling abnormal cases 108
Part 3.6: An example project 124
Part 3.7: Methodological notes 130
Part 3.8: Other contract constructs 141

• Part 4: Tools 147

• Part 5: Sources and further developments 172

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

3

 PART 0:

INTRODUCTION

AND OVERVIEW

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

4

DESIGN BY CONTRACT

A systematic method for making software reliable.

Applications:

• Better analysis and design.

• Implementation.

• Testing, debugging, quality assurance.

• Documentation.

• Basis for exception handling.

• Controlling inheritance (sub-contracting).

• Project management: preserving top designers’ work.

• Built-in reliability.
(Harlan Mills, 1975: “How to write correct programs,
and know it”.)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

5

DESIGN BY CONTRACT:
SCOPE

Methodological principles are language- and tool-independent.

Applications to debugging, quality assurance, testing,
documentation, exception handling, inheritance require language
and tool support:

• Built-in in the Eiffel language, the BON analysis & design
method & notation, and the supporting tools (EiffelBench,
EiffelCase). See also Catalysis and OCL.

• Can be partially emulated in C++ through macros.

• Various proposed extensions for Java.

• Extensions proposed for other languages.

See part 4.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

6

DESIGN BY CONTRACT

Every software element is intended to satisfy a certain goal, for
the benefit of other software elements (and ultimately of human
users).

This goal is the element’s contract.

The contract of any software element should be

• Explicit.

• Part of the software element itself.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

7

A NEW VIEW OF SOFTWARE CONSTRUCTION

Constructing systems as structured collections of cooperating
software elements — clients and suppliers — cooperating on the
basis of clear definitions of obligations and benefits.

These definitions are the contracts.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

8

PROPERTIES OF CONTRACTS

A contract:

• Binds two parties (or more): client, supplier.

• Is explicit (written).

• Specifies mutual obligations and benefits.

• Usually maps obligation for one of the parties into benefit for
the other, and conversely.

• Has no hidden clauses: obligations are those specified.

• Often relies, implicitly or explicitly, on general rules applicable
to all contracts (laws, regulations, standard practices).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

9

A HUMAN CONTRACT

deliver OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Bring package before 4 PM;
pay fee.

(From postcondition:)

Get package delivered
by 10 AM next day.

Supplier
(Satisfy postcondition:)

Deliver package by 10 AM
next day.

(From precondition:)

Not required to do
anything if package
delivered after 4 PM, or
fee not paid.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

10

AN ANALYSIS CONTRACT
deferred class PLANE inherit

AIRCRAFT
feature

start_take_off is
-- Initiate take-off procedures.

require
controls.passed; assigned_runway.clear

deferred
ensure

assigned_runway.owner = Current
moving

end
start_landing, increase_altitude, decrease_altitude,
moving, altitude, speed, time_since_take_off
... [Other features] ...

invariant
(time_since_take_off <= 120) implies (assigned_runway.owner = Current)
moving = (speed > 10)

end

Postcondition

Precondition

Class invariant

-- i.e. specified only,
-- not implemented.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

11

AN ANALYSIS CONTRACT
deferred class VAT inherit

TANK
feature

in_valve, out_valve: VALVE

fill is
-- Fill the vat.

require
in_valve.open; out_valve.closed

deferred
ensure

in_valve.closed; out_valve.closed; is_ full
end

empty, is_full, is_empty, gauge, maximum,
...[Other features] ...

invariant
is_ full = ((gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum))

end

Postcondition

Precondition

Class invariant

-- i.e. specified only,
-- not implemented.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

12

RUNWAYS
deferred class RUNWAY feature

owner: AIRCRAFT

clear: BOOLEAN

... [Other features] ...

invariant

clear_iff_owned: not clear = (owner /= Void)

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

13

CONTRACTS FOR ANALYSIS

fill OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure input valve is
open, output valve is closed.

(From postcondition:)

Get filled-up vat, with
both valves closed.

Supplier
(Satisfy postcondition:)

Fill the vat and close both
valves.

(From precondition:)

Simpler processing
thanks to assumption
that valves are in the
proper initial position.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

14

CONVENTIONS AND TERMINOLOGY

Assumed: object-oriented software construction. Modular unit is
the class. A class also describes a type.

Classes introduce features.

Features are of two kinds:

• Attributes (data members, instance variables), representing
fields of the corresponding objects.

• Routines (methods, subprograms), representing algorithms.
Routines include procedures and functions.

Inheritance — single, multiple and repeated.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

15

ATTRIBUTES AND ROUTINES

deposits

withdrawals

Attributes: deposits, withdrawals

Routine: balance

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

16

CONVENTIONS AND TERMINOLOGY

A class or feature may be deferred (abstract, pure virtual):
specified, but not implemented (or not fully implemented).

A non-deferred class or feature is effective.

A deferred class may include effective features.

A class may redeclare an inherited features:

• Redefinition (change implementation)

• Effecting (provide implementation if original was deferred)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

17

DESIGN PRINCIPLES

Information hiding

Data abstraction; access to objects is only through official
interface. (Violated in Java, C++; see page 153).

Two relations between classes: client, inheritance.

Uniform access principle (see next)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

18

THE PRINCIPLE OF UNIFORM ACCESS

(Definition: A client of a module is any module that uses its
services.)

Notational issue only; but has a potentially big impact in
large, long-running developments.

The features of a class must be accessed
by clients in the same way whether
implemented by computation or by storage.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

19

UNIFORM ACCESS: AN EXAMPLE — BANK ACCOUNTS

Consistency constraint:
balance = deposits.total – withdrawals.total

Ada, Pascal, C: Simula, Eiffel, ...:
a .balance a .balance
balance (a)

deposits

withdrawals
(A1)

deposits

withdrawals

balance

(A2)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

20

INCREMENTAL DEVELOPMENT: THE CLUSTER MODEL
Feasibility

Study

Division into
Clusters

Cluster 1

PROJECT TIME

Cluster 2

Cluster n

V & V

Genera
lization

Genera
lization

V & V

Genera
lization

Specifi-
cation

Implementa-
tion

Implemen-
tation

Specifi-
cation

Implemen-
tation

Specifi-
cation

Design

Design

Design

V & V

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

21

CLUSTER RELATIONS

TIME

Cluster 2

Cluster n

Cluster 1IS G

More

More general

application-
specific

Client
dependency

V&V

V&V

GID

D

S

D V&V GIS

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

22

 PART 1:

ISSUES

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

23

THE GOAL: SOFTWARE RELIABILITY

Software quality factors (partial list):

• RELIABILITY

• REUSABILITY

• EXTENDIBILITY

• PORTABILITY

• EASE OF LEARNING

• EASE OF OPERATION

• INTEGRITY

• ... (cf. OOSC-2)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

24

COMPONENTS OF RELIABILITY

Correctness:

• The ability of a software system to perform according to the
specification, in cases defined by the specification.

Robustness:

• The ability of a software system to react in a reasonable
manner to cases not covered by the specification.

SPECIFICATION
Correctness

Robustness

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

25

SOFTWARE QUALITY

Currently not the principal concern of decision makers.

The weakest link in the software industry.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

26

NON-QUALITY

Source: (Standish Group) Ted Lewis, IEEE Computer, July 1998

31% of 175,000 projects surveyed canceled before completion.

$81 billion in damaged goods

52% of remaining projects ran over budget by an average of 189%
($59 billion in 1995).

9% of projects on time and under budget.

Total estimate for 1998: $365 billion = Microsoft + Intel + Cisco

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

27

NON-QUALITY

September 1997: missile Cruiser USS Yorktown, “dead in the
water” for two hours and 45 minutes, due to a divide by zero in
Windows NT.

Ariane 5 ESA rocket launcher (see Jean-Marc Jézéquel & BM,
IEEE Computer, January 1997)

Therac-25

London Ambulance System

Year 2000 (see Christopher Creele, BM and Philippe Stephan,
IEEE Computer, November 1997)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

28

APPROACHES TO QUALITY

A posteriori (testing)

“Test, test and retest”

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

29

APPROACHES TO QUALITY (TECHNICAL)

Formal specification and verification

• Fully formal: Z (Abrial/Oxford), Object Z (U. Queensland), VDM,
OBJ (SRI), Larch (MIT), B (Abrial), VSE (Germany) ...

• Partly formal: Design by Contract

Programming language support

• Static typing

• Garbage collection

• No pointer arithmetic, gotos etc.

• Object technology: abstraction, structure, information hiding

• Clear, simple syntax

Style standards

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

30

APPROACHES TO QUALITY (MANAGERIAL)

• Capability Maturity Model (Software Engineering Institute).

• ISO 9001

• Buy from market leader

• Get software in source form, benefit from public scrutiny

• Metrics collection and application

• Code reviews

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

31

APPROACHES TO QUALITY: COMPONENTS

Reuse, components, COTS (Commercial Off-The-Shelf), CBD
(Component-Based Development).

Component experience:

• O-O libraries: Smalltalk, Eiffel, STL, ...
• Binary components
Binary component standards:

• CORBA
• COM/DCOM
• Enterprise Java Beans

The major component issue:

Component quality

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

32

ARIANE 5, JUNE 1996

$10s of billions.

40 seconds into flight, exception in Ada program not handled;
order given to abort the mission.

Exception was caused by an incorrect conversion: a 64-bit real
value was incorrectly translated into a 16-bit integer.

• Not a design error.

• Not an implementation error.

• Not a language issue.

• Not really a testing problem.

• Only partly a quality assurance issue.

Systematic analysis had PROVED that the exception could not
occur — the 64-bit value (“horizontal bias” of the flight) was
proved to be always representable as a 16-bit integer!

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

33

THE ARIANE-5 FAILURE (CONTINUED)

It was a REUSE error:

• The analysis was correct — for Ariane 4!

• The assumption was documented — in a design document!

With Design by Contract, the error would almost certainly (if not avoided
in the first place) detected by either static inspection or testing:

integer_bias (b: REAL): INTEGER is

do
...

ensure
equivalent (b, Result)

end

require
representable (b)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

34

THE ARIANE-5 FAILURE (CONCLUSION)

The main lesson:

See:

Jean-Marc Jézéquel and Bertrand Meyer

Design by Contract: The Lessons of Ariane

IEEE Computer, January 1997.

Also at http://eiffel.com

Reuse without a contract is sheer folly

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

35

QUALITY: THE ROAD TOWARDS A SOLUTION

No “just do this” approach.

• Component-based development

• Formal or partially formal techniques (Design by Contract)

• Object technology

• Modern programming language techniques

• Systematic testing

• Open source

• Systematic metrics collection and analysis

• Management, engineering process etc.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

36

 PART 2:

PRINCIPLES

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

37

CORRECTNESS IN SOFTWARE

Correctness is a relative notion: consistency of implementation
vis-à-vis specification. (This assumes there is a specification!)

Basic notation: (, : assertions, i.e. properties of the state of
the computation. : instructions).

“Hoare triple” (after C.A.R. (“Tony”) Hoare, Oxford University).

What this means (total correctness):

Any execution of A started in a state satisfying P
will terminate in a state satisfying Q.

P Q
A

{P} A {Q}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

38

HOARE TRIPLES: A SIMPLE EXAMPLE

Most interesting properties:

• Strongest postcondition (from given precondition).
• Weakest precondition (from given postcondition).

“P is stronger than or equal to Q” means:

P implies Q

QUIZ: What is the strongest possible assertion? The weakest?

{n > 5} n := n + 9 {n > 13}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

39

SPECIFYING A SQUARE ROOT ROUTINE

{x >= 0}

y := sqrt (x)

{abs (y ^ 2 – x) <= 2 ∗ epsilon ∗ y}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

40

SOFTWARE CORRECTNESS: A QUIZ

Consider

Take this as a job ad in the classifieds.

Should a lazy employment candidate hope for a weak or strong
P? What about Q?

Two special offers:

• 1. {False} A {...}

• 2. {...} A {True}

•

{P} A {Q}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

41

SPECIFYING A SQUARE ROOT ROUTINE

{x >= 0}

y := sqrt (x)

{abs (y ^ 2 – x) <= 2 ∗ epsilon ∗ y}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

42

A CONTRACT (FROM EIFFELBASE)

extend (new: G; key: H)

- - Assuming there is no item of key key,
- - insert new with key; set inserted.

require

not_key_present: not has (key)

ensure

insertion_done: item (key) = new

key_present: has (key)

inserted: inserted

one_more: count = old count + 1

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

43

THE CONTRACT

OBLIGATIONS BENEFITS

Client PRECONDITION POSTCONDITION

Supplier POSTCONDITION PRECONDITION

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

44

A CLASS WITHOUT CONTRACTS

class ACCOUNT feature

-- Balance and minimum balance:

balance: INTEGER

Minimum_balance: INTEGER is 1000

feature {NONE} -- Implementation of deposit and withdrawal

 add (sum: INTEGER) is
 -- Add sum to the balance (secret procedure).

do
balance := balance + sum

 end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

45

WITHOUT CONTRACTS (CONTINUED)

feature -- Deposit and withdrawal operations

deposit (sum: INTEGER) is
 -- Deposit sum into the account.

do
 add (sum)

end

 withdraw (sum: INTEGER) is
-- Withdraw sum from the account.

do
 add (–sum)

end

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is it permitted to withdraw sum from the account?

do
Result := (balance >= Minimum_balance + sum)

end
end -- class ACCOUNT

U S I N G A S S p E R T I O N S

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

46

INTRODUCING CONTRACTS

class ACCOUNT create

make

feature -- Initialization

make (initial_amount: INTEGER) is
-- Set up account with initial_amount

do
balance := initial_amount

end

feature -- Balance and minimum balance

balance: INTEGER
Minimum_balance: INTEGER is 1000

require
large_enough: initial_amount >= Minimum_balance

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

47

INTRODUCING CONTRACTS (CONTINUED)

feature {NONE} -- Implementation of deposit and withdrawal

 add (sum: INTEGER) is
 -- Add sum to the balance (secret procedure).

do
balance := balance + sum

 end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

48

WITH CONTRACTS (CONTINUED)

feature -- Deposit and withdrawal operations

 deposit (sum: INTEGER) is
 -- Deposit sum into the account

do
 add (sum)

end

require
not_too_small: sum >= 0

ensure
increased: balance = old balance + sum

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

49

WITH CONTRACTS (CONTINUED

withdraw (sum: INTEGER) is
-- Withdraw sum from the account

do
add (–sum) - - i.e. balance := balance – sum

end

require
not_too_small: sum >= 0
not_too_big: sum <= balance – Minimum_balance

ensure
decreased: balance = old balance – sum

About old see also Nana, page 154

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

50

THE CONTRACT

withdraw OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure sum is neither
too small nor too big.

(From postcondition:)
Get account updated with
sum withdrawn.

Supplier
(Satisfy postcondition:)

Update account for
withdrawal of sum.

(From precondition:)
Simpler processing: may
assume that sum is within
allowable bounds

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

51

THE IMPERATIVE AND THE APPLICATIVE

do
balance balance – sum

ensure
balance old balance – sum

PRESCRIPTIVE DESCRIPTIVE

How What

Operational Denotational

Implementation Specification

Command Query

Instruction Expression

Imperative Applicative

:= =

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

52

WITH CONTRACTS (END)

may_withdraw (sum: INTEGER): BOOLEAN is

-- Is it possible to withdraw sum from the account?
do

Result := (balance >= Minimum_balance + sum)
end

end -- class ACCOUNT

invariant

not_under_minimum: balance >= Minimum_balance

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

53

THE CLASS INVARIANT

Consistency constraint applicable to all instances of a class.

Must be satisfied:

• After creation.

• After execution of any feature by any client.

(Qualified calls only: a.f (...))

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

54

LIST STRUCTURES
after

item

index

count1

forth

start

before

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

55

THE CORRECTNESS OF A CLASS
 create a.make (...)

S1

a.f (...)

a.g

a.f (...)

(1-n) For every exported routine r:

{INV and prer} dor {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {postcp and INV}

The worst possible erroneous run-time
situation in object-oriented software
development:

• Producing an object which does not satisfy
the invariant of its own class.

S1S3

S4

S2

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

56

UNIFORM ACCESS: AN EXAMPLE — BANK ACCOUNTS

balance = deposits.total – withdrawals.total

deposits

withdrawals
(A1)

deposits

withdrawals

balance

(A2)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

57

A MORE SOPHISTICATED VERSION

class ACCOUNT create

make

featur {NONE} -- Implementation

 add (sum: INTEGER) is
 -- Add sum to the balance (secret procedure).

do
balance := balance + sum

 end

deposits: DEPOSIT_LIST

withdrawals: WITHDRAWAL_LIST

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

58

NEW VERSION (CONTINUED)

feature {NONE} - - Initialization

make (initial_amount: INTEGER) is
-- Set up account with initial_amount

require
large_enough: initial_amount >= Minimum_balance

do
balance := initial_amount

end

feature -- Balance and minimum balance
balance: INTEGER
Minimum_balance: INTEGER is 1000

create deposits.make
create withdrawals.make

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

59

NEW VERSION (CONTINUED)

feature -- Deposit and withdrawal operations

 deposit (sum: INTEGER) is
 -- Deposit sum into the account

require
not_too_small: sum >= 0

do
 add (sum)

ensure
increased: balance = old balance + sum

end

deposits.extend (create {DEPOSIT} .make (sum))

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

60

NEW VERSION (CONTINUED)

withdraw (sum: INTEGER) is
-- Withdraw sum from the account

require
not_too_small: sum >= 0

not_too_big: sum <= balance – Minimum_balance
do

 add (–sum)

ensure
decreased: balance = old balance – sum

end

withdrawals.extend (create {WITHDRAWAL} .make (sum))

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

61

NEW VERSION (END)

may_withdraw (sum: INTEGER): BOOLEAN is

-- Is it possible to withdraw sum from the account?
do

Result := (balance >= Minimum_balance + sum)
end

invariant

not_under_minimum: balance >= Minimum_balance

end -- class ACCOUNT

consistent: balance = deposits.total – withdrawals.total

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

62

THE CORRECTNESS OF A CLASS
 create a.make (...)

S1

a.f (...)

a.g

a.f (...)

(1-n) For every exported routine r:

{INV and prer} dor {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {postcp and INV}

S1S3

S4

S2

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

63

SECOND BANK ACCOUNT REPRESENTATION

balance = deposits.total – withdrawals.total

deposits

withdrawals

balance

(A2)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

64

USING CONTRACTS

class ARRAYED_LIST [G] inherit
LIST

redefine put_left, put_right end
ARRAY

rename put as array_put end
feature

put_right (x: G) is
-- Insert x right of cursor position; move cursor to new item.

do
...

end
... Other features ...

invariant
0 <= index; index <= count + 1

end - - class ARRAYED_LIST

require
not after

before after
item

index

count1

ensure
item = x
count = old count + 1
index = old index + 1

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

65

DESIGN BY CONTRACT

put_right OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)
Make sure cursor is at
valid insertion position.

(From postcondition:)
Get x added to the list at
desired position.

Supplier
(Satisfy postcondition:)
Insert x to right of
cursor position; bring
cursor to new item.

(From precondition:)
Simpler processing
thanks to assumption
that cursor is valid
insertion position.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

66

OBJECT-ORIENTED ANALYSIS USING CONTRACTS
deferred class VAT inherit

TANK
feature

in_valve, out_valve: VALVE

fill is
-- Fill the vat.

require
in_valve.open; out_valve.closed

deferred
ensure

in_valve.closed; out_valve.closed; is_ full
end

empty, is_full, is_empty,gauge, maximum,
... [Other features] ...

invariant
is_ full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Postcondition

Precondition

Class invariant

-- i.e. specified only,
-- not implemented.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

67

CONTRACTS FOR ANALYSIS

fill OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Make sure input valve is
open, output valve is closed.

(From postcondition:)

Get filled-up vat, with
both valves closed.

Supplier
(Satisfy postcondition:)

Fill the vat and close both
valves.

(From precondition:)

Simpler processing
thanks to assumption
that valves are in the
proper initial position.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

68

FURTHER EXAMPLES

See e.g. LIST, LINKED_LIST in EiffelBase

Pay particular attention to class invariants.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

69

CONTRACTS: RUN-TIME EFFECT

Compilation options (per class, in Eiffel):

1• No assertion checking

2• Preconditions only

3• Preconditions and postconditions

4• Preconditions, postconditions, class invariants

5• All assertions

For the difference between levels 4 and 5, see page 141.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

70

A CONTRACT VIOLATION IS NOT A SPECIAL CASE

For special cases

(e.g. “if the sum is negative, report an error...”)

use standard control structures, e.g. if ... then ... else.

A run-time assertion violation is something else: the
manifestation of

A DEFECT (“BUG”)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

71

THE CONTRACT LANGUAGE

Language of boolean expressions (plus old):

• No predicate calculus (i.e. no quantifiers, ∀ or ∃).

• Function calls permitted, e.g (in a STACK class):

put (x: G) is
- - Push x on top of stack

require

do
...

ensure

end

remove is
- - Pop top of stack

require

do
...

ensure

end

not full

not empty

not empty

not full

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

72

THE CONTRACT LANGUAGE

First order predicate calculus may be desirable, but not sufficient
anyway.

Example: “The graph has no cycles”.

In assertions, use only side-effect-free functions.

Use of iterators provides the equivalent of first-order predicate
calculus in connection with a library such as EiffelBase or STL.
For example:

my_integer_list.for_all (~ is_positive (?))

with
is_positive (x: INTEGER): BOOLEAN is do Result := (x > 0) end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

73

THE IMPERATIVE AND THE APPLICATIVE

do
balance balance – sum

ensure
balance old balance – sum

PRESCRIPTIVE DESCRIPTIVE

How What

Operational “Denotational”

Implementation Specification

Command Query

Instruction Expression

Imperative “Applicative”

:= =

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

74

 PART 3:

APPLICATIONS

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

75

PART 3.1: WHAT ARE CONTRACTS GOOD FOR?

• Writing correct software (analysis, design, implementation,
maintenance, reengineering).

• Documentation (the “short” form of a class).

• Effective reuse.

• Controlling inheritance.

• Preserving the work of the best developers.

-

• Quality assurance, testing, debugging.
 (especially in connection with the use of libraries)

• Exception handling

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

76

A CONTRACT VIOLATION IS NOT A SPECIAL CASE

For special cases

(e.g. “if the sum is negative, report an error...”)

use standard control structures, e.g. if ... then ... else.

A run-time contract violation is something else: the manifestation
of

A DEFECT (“BUG”)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

77

PART 3.2: CONTRACTS AND QUALITY ASSURANCE

Precondition violation: BUG IN THE CLIENT.

Postcondition violation: BUG IN THE SUPPLIER.

Invariant violation: BUG IN THE SUPPLIER.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

78

CONTRACTS AND BUG TYPES

Preconditions are particularly useful to find bugs in client code:

YOUR

COMPONENT

your_list.insert (y, a + b + 1)

class LIST [G] feature
...
insert (x: G; i: INTEGER) is

require
i >= 0
i <= count + 1

LIBRARY

APPLICATION

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

79

CONTRACTS AND QUALITY ASSURANCE

Use run-time assertion monitoring for quality assurance, testing,
debugging.

Compilation options (reminder):

1• No assertion checking

2• Preconditions only

3• Preconditions and postconditions

4• Preconditions, postconditions, class invariants

5• All assertions

For the difference between levels 4 and 5, see page 141.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

80

CONTRACTS AND QUALITY ASSURANCE

Contracts enable QA activities to be based on a precise
description of what they expect.

Profoundly transform the activities of testing, debugging and
maintenance.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

81

DEBUGGING WITH CONTRACTS: AN EXAMPLE

This example will use a live demo from ISE’s EiffelBench, with a
“planted” error leading to a precondition violation.

The example uses both the browsing and debugging
mechanisms.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

82

TO UNDERSTAND THE EXAMPLE:
LIST CONVENTIONS

after
item

index

count1

forth

start

before

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

83

LINKED LIST REPRESENTATION

(LINKED_LIST)

(LINKABLE) (LINKABLE) (LINKABLE)

item right

–6.5 7.0 3.1

first_element

count

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

84

ADDING AND CATCHING A BUG

In class STARTER, procedure make_a_list, replace the first call to
extend by a call to put.

Execute system. What happens?

Use browsing mechanisms to find out what’s wrong (violated
precondition).

To understand, consider what the diagram of page 82 becomes when
the number of list items goes to zero.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

85

CONTRACT MONITORING

Enabled or disabled by compile-time options.

Default: preconditions only.

In development: use “all assertions” whenever possible.

During operation: normally, should disable monitoring. But have
an assertion-monitoring version ready for shipping.

Result of an assertion violation: exception.

Ideally: static checking (proofs) rather than dynamic monitoring.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

86

PART 3.3: CONTRACTS AND DOCUMENTATION

Recall example class:

class ACCOUNT create

make

feature {NONE} -- Implementation

 add (sum: INTEGER) is
 -- Add sum to the balance (secret procedure).

do
balance := balance + sum

 end

deposits: DEPOSIT_LIST

withdrawals: WITHDRAWAL_LIST

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

87

CLASS EXAMPLE (CONTINUED)

feature - - Initialization

make (initial_amount: INTEGER) is
-- Set up account with initial_amount

require
large_enough: initial_amount >= Minimum_balance

do
balance := initial_amount
create deposits.make
create withdrawals.make

end

feature -- Balance and minimum balance
balance: INTEGER
Minimum_balance: INTEGER is 1000

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

88

CLASS EXAMPLE (CONTINUED)

feature -- Deposit and withdrawal operations

 deposit (sum: INTEGER) is
 -- Deposit sum into the account

require
not_too_small: sum >= 0

do
 add (sum)

deposits.extend (create {DEPOSIT} .make (sum))
ensure

increased: balance = old balance + sum

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

89

CLASS EXAMPLE (CONTINUED)

withdraw (sum: INTEGER) is
-- Withdraw sum from the account

require
not_too_small: sum >= 0
not_too_big: sum <= balance – Minimum_balance

do
 add (–sum)

withdrawals.extend (create {WITHDRAWAL} .make (sum))
ensure

decreased: balance = old balance – sum
end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

90

CLASS EXAMPLE (END)

may_withdraw (sum: INTEGER): BOOLEAN is

-- Is it possible to withdraw sum from the account?
do

Result := (balance >= Minimum_balance + sum)
end

invariant

not_under_minimum: balance >= Minimum_balance

consistent: balance = deposits.total – withdrawals.total

end -- class ACCOUNT

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

91

SHORT FORM: DEFINITION

See also: JavaDoc

Simplified form of class text, retaining interface elements only:

• Remove any non-exported (private) feature.

For the exported (public) features:

• Remove body (do clause).

• Keep header comment if present.

• Keep contracts: preconditions, postconditions, class
invariant.

• Remove any contract clause that refers to a secret feature.
(This raises a problem; can you see it?)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

92

EXPORT RULE FOR PRECONDITIONS

In

some_property must be exported (at least) to A, B and C!

No such requirement for postconditions and invariants.

feature {A, B, C}

require

...
end

r (...) is

some_property

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

93

SHORT FORM OF ACCOUNT CLASS

class interface ACCOUNT create

make (initial_amount: INTEGER)
-- Set up account with initial_amount.

require
initial_amount >= 0

feature

balance: INTEGER

Minimum_balance: INTEGER is 1000

deposit (sum: INTEGER)
 -- Deposit sum into account.

require
not_too_small: sum >= 0

ensure
increased: balance = old balance + sum

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

94

SHORT FORM (CONTINUED)

withdraw (sum: INTEGER)
-- Withdraw sum from account.

require
not_too_small: sum >= 0
not_too_big: sum <= balance – Minimum_balance

ensure
decreased: balance = old balance – sum

may_withdraw (sum: INTEGER): BOOLEAN
-- Is it permitted to withdraw sum from the account?

invariant

not_under_minimum: balance >= Minimum_balance

end -- class interface ACCOUNT

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

95

FLAT, FLAT-SHORT

Flat form of a class: reconstructed class with all the features at
the same level (immediate and inherited). Takes renaming,
redefinition etc. into account.

The flat-form is an inheritance-free client-equivalent form of the
class.

Flat-short form: the short form of the flat form. Full interface
documentation.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

96

USES OF THE (FLAT-)SHORT FORM

• Documentation, manuals

• Design

• Communication between developers

• Communication between developers and managers

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

97

CONTRACTS AND REUSE

The short form — i.e. the set of contracts governing a class —
should be the standard form of library documentation.

See the Ariane 5 example.

Reuse without a contract is sheer folly.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

98

PART 3.4: CONTRACTS AND INHERITANCE

THE INVARIANT RULE

The invariant of a class automatically includes the invariant
clauses from all its parents, “and”-ed.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

99

CONTRACTS AND INHERITANCE

AC
a1: A

B

r is
require

α
ensure

β

r is
require

γ
ensure

δ

a1.r (...)
Correct call:

if a1.α then
a1.r (...)

-- Here a1.β holds.
end

...
D

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

100

ASSERTION REDECLARATION RULE

When redeclaring a routine:

• Precondition may only be kept or weakened.

• Postcondition may only be kept or strengthened.

Redeclaration covers both redefinition and effecting.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

101

ASSERTION REDECLARATION RULE (EIFFEL)

Redeclared version may not have require or ensure.

May have nothing (assertions kept by default), or

Resulting assertions are:

original_precondition or new_pre

original_postcondition and new_post

require else new_pre

ensure then new_post

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

102

DON’T CALL US, WE’LL CALL YOU

deferred class LIST [G] inherit

CHAIN [G]

feature

has (x: G): BOOLEAN is

- - Does x appear in list?

do

from start until after or else found (x) loop

forth

end

Result := not after

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

103

SEQUENTIAL STRUCTURES (Continued)

forth is
require

not after
deferred
ensure

index = old index + 1
end

start is
deferred
ensure

empty or else position = 1
end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

104

SEQUENTIAL STRUCTURES

position: INTEGER is deferred end

... empty, found, after, ...

invariant

0 <= position; position <= size + 1

empty implies (after or before)

end - - class LIST

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

105

SEQUENTIAL STRUCTURES
after

item

index

count1

forth

start

before

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

106

DESCENDANT IMPLEMENTATIONS

∗LIST

+ARRAYED
LIST

+LINKED_
LIST

+
BLOCK_

LIST

∗
CHAIN

has+
after∗
forth∗
item∗
start∗

after+

forth+

item+

start+

after+

forth+

item+

start+

after+

forth+

item+

start+

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

107

IMPLEMENTATION VARIANTS

start forth after found (x)

Arrayed list i := 1 i := i + 1 i > count t @ i = x

Linked list c := first_cell c := c.right c = Void c.item = x

File rewind read end_of_file f↑ = x

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

108

PART 3.5: EXCEPTION HANDLING

The need for exceptions arises when the contract is broken.

Two concepts:

• Failure: a routine, or other operation, is unable to fulfill its
contract.

• Exception: an undesirable event occurs during the execution
of a routine — as a result of the failure of some operation called
by the routine.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

109

THE ORIGINAL STRATEGY

r (...) is

do

op1

op2

...

opi

...

opn

end

Fails, triggering an exception in r
(r is recipient of exception).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

110

CAUSES OF EXCEPTIONS

Assertion violation

Void call (x.f with no object attached to x)

Operating system signal (arithmetic overflow, no more memory,
interrupt ...)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

111

THE EXCEPTION HANDLING RULE

SAFE EXCEPTION HANDLING PRINCIPLE

There are only two acceptable ways to react for the
recipient of an exception:

• Try again, using a different strategy (or repeating
the same strategy) (Retrying).

• Concede failure, and trigger an exception in the
caller (Organized Panic).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

112

HOW NOT TO DO IT

(From an Ada textbook)

sqrt (x: REAL) return REAL is
begin

if x < 0.0 then
raise Negative;

else
normal_square_root_computation;

end
exception

when Negative =>
put ("Negative argument");

when others => …
end; - - sqrt

return;

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

113

THE CALL CHAIN

r0 r1

r2

r3

r4

Routine call

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

114

EXCEPTION MECHANISM

Two constructs:

• A routine may contain a rescue clause.

• A rescue clause may contain a retry instruction.

A rescue clause that does not execute a retry leads to failure of
the routine (this is the organized panic case).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

115

TRANSMITTING OVER AN UNRELIABLE LINE (1)

Max_attempts: INTEGER is 100

attempt_transmission (message: STRING) is
- - Transmit message in at most Max_attempts attempts.

local
failures: INTEGER

do
unsafe_transmit (message)

failures := failures + 1
if failures < Max_attempts then

end
end

rescue

retry

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

116

TRANSMITTING OVER AN UNRELIABLE LINE (2)

Max_attempts: INTEGER is 100

failed: BOOLEAN

attempt_transmission (message: STRING) is
- - Try to transmit message; if impossible in at most
- - Max_attempts, set failed to true.

local
failures: INTEGER

do
if failures < Max_attempts then

unsafe_transmit (message)
else

failed := True
end

failures := failures + 1

end

rescue

retry

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

117

IF NO EXCEPTION CLAUSE (1)

Absence of a rescue clause is equivalent, in first approximation,
to an empty rescue clause:

f (...) is
do

...
end

is an abbreviation for

f (...) is
do

...

- - Nothing here
end

(This is a provisional rule; see page 122.)

rescue

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

118

THE CORRECTNESS OF A CLASS
 create a.make (...)

S1

a.f (...)

a.g (...)

a.f (...)

(1-n) For every exported routine r:

{INV and prer} dor {INV and postr}

(1-m) For every creation procedure cp:

{precp} docp {postcp and INV}

S1S3

S4

S2

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

119

EXCEPTION CORRECTNESS: A QUIZ

For the normal body:

{INV and prer} dor {INV and postr}

For the exception clause:

{ ??? } rescuer {??? }

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

120

QUIZ ANSWERS

For the normal body:

{INV and prer} dor {INV and postr}

For the rescue clause:

{ True } rescuer {INV }

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

121

UNIFORM ACCESS: AN EXAMPLE — BANK ACCOUNTS

balance = deposits.total – withdrawals.total

deposits

withdrawals
(A1)

deposits

withdrawals

balance

(A2)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

122

IF NO EXCEPTION CLAUSE (2)

Absence of a rescue clause is equivalent to a default rescue
clause:

f (...) is
do

...
end

is an abbreviation for

f (...) is
do

...

default_rescue
end

The task of default_rescue is to restore the invariant.

rescue

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

123

FOR FINER-GRAIN EXCEPTION HANDLING

Use class EXCEPTIONS from the Kernel Library.

Some features:

exception (code of last exception that was triggered).

is_assertion_violation, etc.

raise (“EX_NAME”)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

124

PART 3.6: AN EXAMPLE PROJECT

Laser printer software at Hewlett-Packard

1997-1998

Embedded system development: software runs on chip in printer

Host development environment: VxWorks operating system

About 800,000 lines of legacy C code.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

125

INTRODUCING DESIGN BY CONTRACT

First in C and C++ through macros.

Eiffel introduced later, in particular because of memory
management requirements. C calls Eiffel (CECIL library).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

126

BENEFITS

Greatly decreased error rates in the elements built with Design by
Contract.

Several major errors found in the legacy C code.

Bug in chip.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

127

CONTRACTS AS A SAFEGUARD FOR SOFTWARE
EVOLUTION

Christopher Creel (HP project leader):

“In most companies today, you have a small group of hard
guns who are responsible for the core job.

But later the other engineers come in, and because they don't
immediately understand the solution they start hacking it, and
in the process destroy it.”

“The consequence for the quality of the code base is a lowest
common denominator effect: the quality degrades to the level
of the work of those who are not as good.”

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

128

DESIGN BY CONTRACT TO THE RESCUE.

“Design by Contract addresses this. The original designers
build a white-box framework: a scaffold to which you will plug
in the working components — the implementations.

Because they can see further into the future than most
engineers, they puts the contracts in place for all eternity,
destroying errors that other engineers could make 2 years or
10 years later because they don't see the whole picture.”

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

129

FURTHER TECHNICAL ISSUES

• Using contracts well: methodological notes

• Invariants and business rules.

• Checking invariants: why before and after?

• Other contract constructs.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

130

PART 3.7: METHODOLOGICAL NOTES

CONTRACTS ARE NOT INPUT CHECKING TESTS...

... but they can be used to help weed out undesirable input.

Filter modules:

External
objects

Input and
validation
modules

Processing
modules

Preconditions here only

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

131

A NOTE ON PRECONDITIONS

The client must guarantee the precondition before the call.

This does not necessarily mean testing for the precondition.

Schema 1 (testing):

if not my_stack. full then

my_stack.put (some_element)

end

Schema 2 (guaranteeing without testing):

my_stack. remove

...

my_stack.put (some_element)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

132

ANOTHER EXAMPLE

sqrt (x, epsilon: REAL): REAL is
-- Square root of x, precision epsilon

require

do
...

ensure

end

x >= 0
epsilon >= 10 ^ (–6)

abs (Result ^ 2 – x) <= 2 ∗ epsilon ∗ Result

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

133

THE CONTRACT

sqrt OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Provide non-negative value
and requested precision that
is not too small

(From postcondition:)

Get square root within
requested precision.

Supplier
(Satisfy postcondition:)

Produce square root within
requested precision

(From precondition:)

Simpler processing
thanks to assumptions

on value and precision

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

134

NOT DEFENSIVE PROGRAMMING!

It is never acceptable to have a routine of the form

sqrt (x, epsilon: REAL): REAL is
-- Square root of x, precision epsilon

require
x >= 0
epsilon >= 10 ^ (–6)

do
if x < 0 then

... Do something about it (?) ...
else

... Normal square root computation ...
end

ensure
abs (Result ^ 2 – x) <= 2 ∗ epsilon ∗ Result

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

135

NOT DEFENSIVE PROGRAMMING

For every consistency condition that is required to perform a
certain operation:

• Assign responsibility for the condition to one of the contract’s
two parties (client, supplier).

• Stick to this decision: do not duplicate responsibility.

Simplifies software and improves global reliability.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

136

HOW STRONG SHOULD A PRECONDITION BE?

Two opposite styles:

• TOLERANT: weak preconditions (including the weakest, True: no
precondition).

• DEMANDING: strong preconditions, requiring the client to make
sure all logically necessary conditions are satisfied before each
call.

Partly a matter of taste.

But: demanding style leads to a better distribution of roles,
provided the precondition is:

• Justifiable in terms of the specification only.

• Documented (through the short form).

• Reasonable!

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

137

A DEMANDING STYLE

sqrt (x, epsilon: REAL): REAL is
- - Square root of x, precision epsilon
- - (same version as before)

require

do
...

ensure

end

x >= 0
epsilon >= 10 ^ (–6)

abs (Result ^ 2 – x) <= 2 ∗ epsilon ∗ Result

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

138

A TOLERANT STYLE

sqrt (x, epsilon: REAL): REAL is
-- Square root of x, precision epsilon

require

do
if x < 0 then

... Do something about it (?) ...
else

... Normal square root computation ...
end

ensure

end

NO INPUT TOO
BIG OR TOO

SMALL!
True

computed implies
abs (Result ^ 2 – x) <= 2 ∗ epsilon ∗ Result

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

139

CONTRASTING STYLES

put (x: G) is
- - Push x on top of stack.

require
not full

do
....

end

tolerant_put (x: G) is
- - Push x if possible, otherwise set impossible to true.

do
if not full then

put (x)
else

impossible := True
end

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

140

INVARIANTS AND BUSINESS RULES

Invariants are absolute consistency conditions.

They can serve to represent business rules if knowledge is to be
built into the software.

FORM 1

invariant

not_under_minimum: balance >= Minimum_balance

FORM 2

invariant

not_under_minimum_if_normal:
normal_state implies (balance >= Minimum_balance)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

141

PART 3.8: OTHER CONTRACT CONSTRUCTS

The “check” instruction

check
... Assertion ...

end

Often used in a call to a precondition-equipped routine:

x := a ^2 + b^2

… Other instructions …

check
x >= 0

- - Because x was computed above
- - as a sum of squares.

end
y := sqrt (x)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

142

OTHER ASSERTION CONSTRUCTS:
LOOP INVARIANTS AND VARIANTS

from
x := a; y := b

invariant
x > 0; y > 0
- - The pair <x, y> has the same greatest common divisor
- - as the pair <a, b>

variant
x.max (y)

until
x = y

loop
if x > y then x := x – y else y := y – x end

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

143

LOOPS AS COMPUTATIONS BY APPROXIMATION

INV

Post

init
body

body
body

body
body

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

144

AN ARRAY COMPUTATION

from i := t.lower ; Result := t @ lower until i = t.upper loop
i := i + 1; Result := Result.max (t @ i)

end

lower upper

Array sliceArray element

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

145

EXERCISE

Using a loop invariant and a loop variant, produce a correct and
formally justified version of binary search in a sorted array.

(See wrong versions on following page.)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

146

BINARY SEARCH: ERRONEOUS VERSIONS

BS1

from

i := 1; j := n

until i = j loop

m := (i + j) // 2

if t @ m <= x then

i := m

else

j := m

end

end

Result := (x = t @ i)

BS2
from

i := 1; j := n

found := False

until

i = j and not found
loop

m := (i + j) // 2

if t @ m < x then

i := m + 1

elseif t @ m = x then

found := True

else

 j := m – 1

end

end

Result := found

BS3
from

i := 0; j := n

until i = j loop

m := (i + j + 1) // 2

if t @ m <= x then

i := m + 1

else

j := m

end

end

if i >= 1 and i <= n then

Result := (x = t @ i)

else

Result := False

end

BS4
from

i := 0; j := n + 1

until i = j loop

m := (i + j) // 2

if t @ m <= x then

i := m + 1

else

j := m

end

end

if i >= 1 and i <= n then

Result := (x = t @ i)

else
Result := False

end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

147

 PART 4:

TOOLS

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

148

DESIGN BY CONTRACT AND
LANGUAGES/METHODS

Eiffel, Sather: built-in

Contract extensions have been proposed for Ada 83, Smalltalk,
C++, Java, Python...

In analysis and design methods/tools:

• Built-in in BON (Business Object Notation).

• UML extension: Object Constraint Language

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

149

THE BUSINESS OBJECT NOTATION
KIM WALDÉN, JEAN-MARC NERSON

SYSTEMATIC O-O ANALYSIS

BON provides a clear notation and methodological guidelines for
high-level analysis and design. Three key concepts:
seamlessness, reversibility and software contracting.

• Well-defined set of conventions.

• Supports semantics (contracts, ...), not just structure.

• Mechanisms for systematic development; supports Design by
Contract.

• Textual as well as graphical variants. Three views: graphics
(bubbles and arrows!), tables, formal text (Eiffel-like).

• Meant for use with software tools (EiffelCase)

Scales up: abstraction and grouping facilities: Classes, Clusters,
entire systems. Zoom in, zoom out, abstract.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

150

BON REFERENCE

Seamless Object-Oriented Software Architecture

Kim Waldén and Jean-Marc Nerson

Prentice Hall, 1995

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

151

EIFFELCASE: REENGINEERING A LIBRARY

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

152

APPLYING DESIGN BY CONTRACT
IN NON-EIFFEL ENVIRONMENTS

Basic step: use standardized comments, or graphical
annotations, corresponding to require, ensure, invariant clauses.

In programming languages:

• Macros

• Preprocessor

Use of macros avoids the trouble of preprocessors, but invariants
are more difficult to handle than preconditions and
postconditions.

Difficulties: contract inheritance; “short”-like tools; link with
exception mechanism.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

153

C++/JAVA DESIGN BY CONTRACT LIMITATIONS

The possibility of direct assignments

x.attrib = value

limits the effectiveness of contracts: circumvents the official
class interface of the class. In a fully O-O language, use:

x.set_attrib (value)

with

set_attrib (v: TYPE) is (cf p. 17)

- - Make v the next value for attrib.
require

... Some condition on v ...
do

attrib := v
ensure

attrib = v
end

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

154

C++ CONTRACTS

GNU Nana: improved support for contracts and logging in C and
C++.

P.J. Maker, Australia, see:
http://www.cs.ntu.edu.au/homepages/pjm/nana-home/

Set of C++ macros and commands for gdb debugger. Replaces
assert.h. Validated only with GCC. “Support existed in earlier
versions of Nana for the GNU Ada compiler. We may add support
for Ada and FORTRAN in the future if anyone is interested.”

Support for quantifiers (Forall, Exists, Exists1) corresponding to
iterations on the STL (C++ Standard Template Library).

Support for time-related contracts (“Function must execute in
less than 1000 cycles”).

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

155

NANA EXAMPLE

void qsort(int v[], int n) { /* sort v[0..n-1] */
DI(v != NULL && n >= 0); /* check arguments under gdb(1) only */
L("qsort(%p, %d)\n", v, n); /* log messages to a circular buffer */
...; /* the sorting code */

 I(A(int i = 1, i < n, i++, /* verify v[] sorted (Forall) */
v[i-1] <= v[i])); /* forall i in 1..n-1 @ v[i-1] <= v[i] */
}

void intsqrt(int &r) { /* r’ = floor(sqrt(r)) */
DS($r = r); /* save r away into $r for later use under gdb(1) */
DS($start = $cycles); /* real time constraints */
...; /* code which changes r */
DI($cycles – $start < 1000); /* code must take less than 1000 cycles */
DI(((r * r) <= $r) && ($r < (r + 1) * (r + 1))); /* use $r in postcondition */
}

Back to page 49

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

156

NANA

In the basic package: no real notion of class invariant.
(“Invariant”, macro DI, is equivalent of “check” instruction.)

Package eiffel.h “is intended to provide a similar setup to Eiffel in
the C++ language. It is a pretty poor emulation, but it is hopefully
better than nothing.”

Macros: CHECK_NO, CHECK_REQUIRE, CHECK_ENSURE,
CHECK_INVARIANT, CHECK_LOOP, CHECK_ALL.

Using CHECK_INVARIANT assumes a boolean-valued class
method called invariant. Called only if a REQUIRE or ENSURE
clause is present in the method.

No support for contract inheritance.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

157

NANA EIFFEL.H EXAMPLE

(Source: Nana Web page.)

#include <eiffel.h>

class example {
int nobjects;
map<location,string,locationlt> layer;

public:
bool invariant();
void changeit(location l);

};

bool example::invariant() {
return AO(i,layer,valid_location((*i).first)) && nobjects >= 0;

}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

158

void example::changeit(string n, location l) {
REQUIRE(E1O(i,layer,(*i).second == n));

...;

 while(..) {
INVARIANT(...);
...
INVARIANT(...);
}

 ...

 CHECK(x == 5);
...
ENSURE(layer[l] == n);

}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

159

DESIGN BY CONTRACT IN JAVA

Notes:

• OAK 0.5 (pre-Java) contained an assertion mechanism, which
was removed due to “lack of time”.

• “No assertions” is currently #4 on the Java users’ bug list.

• Several different proposals.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

160

iContract

Reference: iContract, the Java Design by Contract Tool, TOOLS
USA 1998, IEEE Computer Press, pages 295-307.

Java preprocessor. Assertions are embedded in special comment
tags, so iContract code remains valid Java code in case the
preprocessor is not available.

Support for Object Constraint Language mechanisms.

Support for assertion inheritance.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

161

iContract example

(See attached paper.)

interface Person {

/∗∗
∗ @post return > 0
∗/
int get Age ()

/∗∗
* @pre age > 0
∗/
void setAge(int age);

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

162

ANOTHER JAVA TOOL: JASS (JAWA)

Preprocessor. Also adds Eiffel-like exception handling.
See http://theoretica.Informatik.Uni-Oldenburg.DE/~jawa/
doc.engl.html

class Alpha {
 int x,y,z
 ...
 private void Div()
 throws RuntimeCheck.AssertionException {
 /* check z!=0 */
 x=y/z;
 /* rescue catch (RuntimeCheck.AssertionException e) {
 z!=1; retry
 }
 */
 }
 ...
}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

163

JASS LIST

package DataContainer;

public class List {
 private Linkable root;
 private Linkable cursor;
 private int pos;
 private int nb_elements;

 public boolean IsEmpty()
 throws RuntimeCheck.AssertionException {
 return (nb_elements == 0);
 /** ensure result == (nb_elements==0); nochange **/
 }

 public void GoToFirstElement()
 throws RuntimeCheck.AssertionException {
 /** require !IsEmpty() **/
 ...
 /** ensure nb_elements==old_nb_elements **/
}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

164

public void GoToNextElement()
 throws RuntimeCheck.AssertionException {
 /** require !IsEmpty() **/
 ...
 /** ensure nb_elements==old_nb_elements **/
 }

 public void GoToLastElement()
 throws RuntimeCheck.AssertionException {
 /** require !IsEmpty() **/
 ...
 /** ensure nb_elements==old_nb_elements;
 cursor.GetNext()==root
 **/
 }

 public void GoToPrevElement()
 throws RuntimeCheck.AssertionException {
 /** require !IsEmpty() **/
 ...
 /** ensure nb_elements==old_nb_elements **/
}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

165

public void Insert(Value value)
 throws RuntimeCheck.AssertionException {
 /** require value!=null **/
 ...
 /** ensure !IsEmpty() **/
 }

 public void Delete()
 throws RuntimeCheck.AssertionException {
 /** require !IsEmpty() **/
 ...
 /** nb_elements==old_nb_elements -1 **/
 }

 /** invariant 0<=pos; pos<=nb_elements;
 pos==GetPosition(cursor);
 cursor==null | pos!=0 ;
 **/
}

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

166

BISCOTTI

Adds assertions to Java, through modifications of the JDK 1.2
compiler.

See IEEE Computer, July 1999

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

167

THE OBJECT CONSTRAINT LANGUAGE

Designed by IBM and other companies as an addition to UML.

Includes support for:

• Invariants, preconditions, postconditions

• Guards (not further specified).

• Predefined types and collection types

• Associations

• Collection operations: ForAll, Exists, Iterate

Not directly intended for execution.

Jos Warmer, AW

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

168

OCL EXAMPLES

Postconditions:

post: result = collection–>iterate
(elem; acc : Integer = 0 | acc + 1)

post: result = collection–>iterate
(elem; acc : Integer = 0 |
if elem = object then acc + 1 else acc endif)

post: T.allInstances–>forAll
(elem | result–>includes(elem) = set–>
includes(elem) and set2–>includes(elem))

Collection types include Collection, Set, Bag, Sequence

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

169

CONTRACTS FOR COM AND CORBA

See: Damien Watkins: Using Interface Definition Languages to
support Path Expressions and Programming by Contract, TOOLS
USA 1998, IEEE Computer Press, pages 308-317.

Set of mechanisms added to IDL to include: preconditions,
postconditions, class invariants.

Examples: see attached paper.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

170

THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
Feasibility

Study

Division into
Clusters

Cluster 1

PROJECT TIME

Cluster 2

Cluster n

V & V

Genera
lization

Genera
lization

V & V

Genera
lization

Specifi-
cation

Implementa-
tion

Implemen-
tation

Specifi-
cation

Implemen-
tation

Specifi-
cation

Design

Design

Design

V & V

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

171

CLUSTER RELATIONS

TIME

Cluster 2

Cluster n

Cluster 1IS G

More

More general

application-
specific

Client
dependency

V&V

V&V

GID

D

S

D V&V GIS

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

172

 PART 5:

SOURCES &

FURTHER DEVELOPMENTS

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

173

SOURCES 1
(See precise references in OOSC-2 bibliography)

Work on formal semantics of programming languages and
program proving:

• “Assigning meaning to programs”, Bob Floyd, 1967.

• “An axiomatic basis for computer programming”, C.A.R.
Hoare, 1969.

• “A Discipline of Programming”, E.W. Dijkstra, 1976.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

174

SOURCES 2

Work on abstract data types:

• Liskov and Zilles, 1974.

• Goguen, Thatcher, Wagner, 1975.

• Guttag, 1977.

• Author, 1976.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

175

SOURCES 3

Work on formal specification and verification:

• Z language, Jean-Raymond Abrial, 1977-1980.

• VDM, Björner and Jones, early eighties.

• M, 1983.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

176

SOURCES 4

Programming languages with assertions:

• Algol W (Hoare and Wirth).

• CLU (Liskov).

• Euclid, Alphard, Turing.

• Anna (Annotated Ada) (Luckham, Stanford University, early
80’s)

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

177

FURTHER DEVELOPMENTS

More extensive contract languages (?.)

More rigorous contract languages.

Timing contracts (temporal logic).

Closer integration in analysis and design methods and tools (cf.
BON, Catalysis, OCL).

Closer integration in the software process: cluster model, ISO
9001, CMM.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

178

THE TRUSTED COMPONENTS INITIATIVE

Initiated by:
Monash University (Melbourne)

Interactive Software Engineering
Univ. of Brighton, IRISA (France)

and other institutions

http://www.trusted-components.org

MISSION

Develop the infrastructure for enabling the software
industry to transform itself into a discipline based on
quality reusable components.

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

179

THE TRUSTED COMPONENTS PROJECT

PRODUCTS

• General-purpose components

• Special-purpose components

• Methodology of component-based developments

• Testing tools

• Proof techniques

• Procedures

• Papers, books, publications...

DESIGN BY CONTRACTCONT 99-9

ISE — Object Excellence

180

A MAJOR TOOL
FOR SOFTWARE ENGINEERING

